An introduction to Zappa-Szép Products

Rida-e-Zenab

(Rida-e-Zenab)

An introduction to Zappa-Szép products

7 Dec 2011 1 / 26

- Zappa-Szép product was developed by *G Zappa* in 1940. He is an atalian mathematician and a famous group theorist.
- In 1941 Casadio and in 1950 Redei studied the variations and generalizations of Zappa-Szép products in setting of groups.
- Redei, Szép and Tibiletti used these products to discover properties of groups in numerous papers. Szép introduced the relations of this

- In 1950 Tolo studied factorizable semigroups which are internal Zappa-Szép products if factorizations are unique.
- Zappa-Szép products in semigroup theory were introduced by M. Kunze in 1983.

- Zappa-Szép product was developed by *G Zappa* in 1940. He is an atalian mathematician and a famous group theorist.
- In 1941 Casadio and in 1950 Redei studied the variations and generalizations of Zappa-Szép products in setting of groups.
- Redei, Szép and Tibiletti used these products to discover properties of groups in numerous papers. Szép introduced the relations of this

- In 1950 Tolo studied factorizable semigroups which are internal Zappa-Szép products if factorizations are unique.
- Zappa-Szép products in semigroup theory were introduced by M. Kunze in 1983.

- Zappa-Szép product was developed by *G Zappa* in 1940. He is an atalian mathematician and a famous group theorist.
- In 1941 Casadio and in 1950 Redei studied the variations and generalizations of Zappa-Szép products in setting of groups.
- Redei, Szép and Tibiletti used these products to discover properties of groups in numerous papers. Szép introduced the relations of this

- In 1950 Tolo studied factorizable semigroups which are internal Zappa-Szép products if factorizations are unique.
- Zappa-Szép products in semigroup theory were introduced by M. Kunze in 1983.

- Zappa-Szép product was developed by *G Zappa* in 1940. He is an atalian mathematician and a famous group theorist.
- In 1941 Casadio and in 1950 Redei studied the variations and generalizations of Zappa-Szép products in setting of groups.
- Redei, Szép and Tibiletti used these products to discover properties of groups in numerous papers. Szép introduced the relations of this

- In 1950 Tolo studied factorizable semigroups which are internal Zappa-Szép products if factorizations are unique.
- Zappa-Szép products in semigroup theory were introduced by M. Kunze in 1983.

- Zappa-Szép product was developed by *G Zappa* in 1940. He is an atalian mathematician and a famous group theorist.
- In 1941 Casadio and in 1950 Redei studied the variations and generalizations of Zappa-Szép products in setting of groups.
- Redei, Szép and Tibiletti used these products to discover properties of groups in numerous papers. Szép introduced the relations of this

- In 1950 Tolo studied factorizable semigroups which are internal Zappa-Szép products if factorizations are unique.
- Zappa-Szép products in semigroup theory were introduced by M. Kunze in 1983.

- Zappa-Szép product was developed by *G Zappa* in 1940. He is an atalian mathematician and a famous group theorist.
- In 1941 Casadio and in 1950 Redei studied the variations and generalizations of Zappa-Szép products in setting of groups.
- Redei, Szép and Tibiletti used these products to discover properties of groups in numerous papers. Szép introduced the relations of this

- In 1950 Tolo studied factorizable semigroups which are internal Zappa-Szép products if factorizations are unique.
- Zappa-Szép products in semigroup theory were introduced by M. Kunze in 1983.

- In 1998 Lavers find conditions under which Zappa-Szép product of two finitely presented monoids is itself finitely presented.
- Brin extended the capability of Zappa-Szép products in categories and monoids in 2005.
- In 2007 M. Lawson studied Zappa-Szép product of a free monoid and a group from the view of self similar group action and completely determined their structure.
- Recently Suha wazan has studied Zappa-Szép products from the view of regular and inverse semigroups. She generalized some results of Lawson and find necessary and sufficient conditions for these products.

- In 1998 Lavers find conditions under which Zappa-Szép product of two finitely presented monoids is itself finitely presented.
- Brin extended the capability of Zappa-Szép products in categories and monoids in 2005.
- In 2007 M. Lawson studied Zappa-Szép product of a free monoid and a group from the view of self similar group action and completely determined their structure.
- Recently Suha wazan has studied Zappa-Szép products from the view of regular and inverse semigroups. She generalized some results of Lawson and find necessary and sufficient conditions for these products.

- In 1998 Lavers find conditions under which Zappa-Szép product of two finitely presented monoids is itself finitely presented.
- Brin extended the capability of Zappa-Szép products in categories and monoids in 2005.
- In 2007 M. Lawson studied Zappa-Szép product of a free monoid and a group from the view of self similar group action and completely determined their structure.
- Recently Suha wazan has studied Zappa-Szép products from the view of regular and inverse semigroups. She generalized some results of Lawson and find necessary and sufficient conditions for these products.

- In 1998 Lavers find conditions under which Zappa-Szép product of two finitely presented monoids is itself finitely presented.
- Brin extended the capability of Zappa-Szép products in categories and monoids in 2005.
- In 2007 M. Lawson studied Zappa-Szép product of a free monoid and a group from the view of self similar group action and completely determined their structure.
- Recently Suha wazan has studied Zappa-Szép products from the view of regular and inverse semigroups. She generalized some results of Lawson and find necessary and sufficient conditions for these products.

- Let G be a group with identity element e. Let N be normal subgroup of G and H be a subgroup of G. Then G is said to be a *semidirect product* of N and H if the following hold.
 - 1. G = HN and 2. $N \cap H = \{e\}$. It is denoted by $G = N \rtimes H$.

Let G be a group with identity element e., and let H and K be subgroups of G. THFAE

• G = HK and $H \cap K = \{e\}$

 For each g ∈ G there exists a unique h ∈ H and unique k ∈ K such that g = hk.

If either (and hence both) of these statements hold, then G is said to be internal Zappa-Szép product of H and K and is denoted by $G = H \bowtie K$.

Let G be a group with identity element e., and let H and K be subgroups of G. THFAE

•
$$G = HK$$
 and $H \cap K = \{e\}$

 For each g ∈ G there exists a unique h ∈ H and unique k ∈ K such that g = hk.

If either (and hence both) of these statements hold, then G is said to be internal Zappa-Szép product of H and K and is denoted by $G = H \bowtie K$.

Let G be a group with identity element e., and let H and K be subgroups of G. THFAE

•
$$G = HK$$
 and $H \cap K = \{e\}$

 For each g ∈ G there exists a unique h ∈ H and unique k ∈ K such that g = hk.

If either (and hence both) of these statements hold, then G is said to be internal Zappa-Szép product of H and K and is denoted by $G = H \bowtie K$.

Let H and K be groups (and let e denote each group's identity element) and suppose we have bijective maps

$$H imes K o H$$
, $(h, k) \mapsto k \cdot h$
 $H imes K o K$, $(h, k) \mapsto k^h$

such that for all $h, h' \in H, k, k' \in K$, (ZS1) $kk' \cdot h = k \cdot (k' \cdot h)$; (ZS2) $k \cdot (hh') = (k \cdot h)(k^h \cdot h')$; (ZS3) $(k^h)^{h'} = k^{hh'}$; (ZS4) $(kk')^h = k^{k' \cdot h}k'^h$. (ZS5) $k \cdot e_H = e_H$ (ZS6) $k^{e_H} = k$ (ZS7) $e_K \cdot h = h$ (ZS8) $e_K^h = e_K$ On the cartesian product $H \times K$, define a multiplication and an inversion map respectively,

$(h, k)(h', k') = (h(k \cdot h'), k^{h'}k').$

٠

$(h,k)^{-1} = (k^{-1} \cdot h^{-1}, (k^{-1})^{h^{-1}}).$

Then $H \times K$ is a group, called *external Zappa-Szép product* of groups H and K and denoted by $H \bowtie K$.

The subsets $H \times \{e\}$ and $\{e\} \times K$ are subgroups isomorphic to H and K, respectively, and $H \bowtie K$ is, in fact, an internal Zappa-Szép product of $H \times \{e\}$ and $\{e\} \times K$.

On the cartesian product $H \times K$, define a multiplication and an inversion map respectively,

$(h, k)(h', k') = (h(k \cdot h'), k^{h'}k').$

۲

$$(h,k)^{-1} = (k^{-1} \cdot h^{-1}, (k^{-1})^{h^{-1}}).$$

Then $H \times K$ is a group, called *external Zappa-Szép product* of groups H and K and denoted by $H \bowtie K$.

The subsets $H \times \{e\}$ and $\{e\} \times K$ are subgroups isomorphic to H and K, respectively, and $H \bowtie K$ is, in fact, an internal Zappa-Szép product of $H \times \{e\}$ and $\{e\} \times K$.

Example 1

Let G = GL(n, C), the general linear group of invertible $n \times n$ matrices over the field of complex numbers. For each matrix A in G, the QRdecomposition asserts that there exists a unique unitary matrix Q and a unique upper triangular matrix R with positive real entries on the main diagonal such that A = QR. Thus G is a Zappa-Szép product of the unitary group U(n) and the group (say) K of upper triangular matrices with positive diagonal entries.

Example 2

One of the most important examples of Zappa-Szép product is Hall's 1937 theorem on the existence of Sylow systems for soluble groups. This shows that every soluble group is a Zappa-Szép product of a Hall *p*-subgroup and a Sylow p-subgroup, and in fact that the group is a (multiple factor) Zappa Szép product of a certain set of representatives of its Sylow subgroups.

The concept of Zappa-Szép product in semigroups was introduced by *M. Kunze* in 1983. He investigated their role in transformation monoids and automata theory. He gave applications of Zappa-Szép product to translational hulls, Bruck- Reilly extensions and Rees matrix semigroups. In 1992 Kunze used the terminology Bilateral semigroup for Zappa-Szép product and studied aperiodic transformation semigroups (X, S) and investigated a strong decomposition of its elements out of idempotents. • Let S and T be semigroups and suppose we are given functions

$$S imes T o S$$
, $(s, t) \mapsto t \cdot s \in S \dashrightarrow (1)$ and
 $S imes T o T$, $(s, t) \mapsto t^s \in T \dashrightarrow (2)$

where $s \in S$ and $t \in T$, satisfying the Zappa-Szép rules (ZS1), (ZS2), (ZS3) and (ZS4) developed by G. Zappa. Then the set $S \times T$ with the product defined by:

$$(s,t)(s'.t') = (s(t.s'), t^{s'}t')$$

is a semigroup, called external Zappa-Szép product of S and T, which is written as $S \bowtie T$.

 A semigroup S is called internal Zappa-Szép product of subsemiroups A and B, if each s ∈ S is uniquely expressible as s = ab. • Let S and T be semigroups and suppose we are given functions

$$S imes T o S$$
, $(s, t) \mapsto t \cdot s \in S \dashrightarrow (1)$ and
 $S imes T o T$, $(s, t) \mapsto t^s \in T \dashrightarrow (2)$

where $s \in S$ and $t \in T$, satisfying the Zappa-Szép rules (ZS1), (ZS2), (ZS3) and (ZS4) developed by G. Zappa. Then the set $S \times T$ with the product defined by:

$$(s,t)(s'.t') = (s(t.s'), t^{s'}t')$$

is a semigroup, called external Zappa-Szép product of S and T, which is written as $S \bowtie T$.

• A semigroup S is called internal Zappa-Szép product of subsemiroups A and B, if each $s \in S$ is uniquely expressible as s = ab.

If S and T are monoids with identities 1_S and 1_T respectively, then external and internal Zappa-Szép products of S and T are defined as above for semigroups satisfying axioms (ZSI) to (ZS8) developed by G Zappa.

 $S \times T$ is a monoid with identity $(1_S, 1_T) \in S \times T$.

Theorem

 $M = S \bowtie T$ is the external Zappa-Szép product of monoids S and T if and only if $M = \overline{S}\overline{T}$ is the internal Zappa-Szép product of submonoids \overline{S} and \overline{T} isomorphic to S and T respectively.

If S and T are monoids with identities 1_S and 1_T respectively, then external and internal Zappa-Szép products of S and T are defined as above for semigroups satisfying axioms (ZSI) to (ZS8) developed by G Zappa.

 $S \times T$ is a monoid with identity $(1_S, 1_T) \in S \times T$.

Theorem

 $M = S \bowtie T$ is the external Zappa-Szép product of monoids S and T if and only if $M = \overline{S}\overline{T}$ is the internal Zappa-Szép product of submonoids \overline{S} and \overline{T} isomorphic to S and T respectively.

Let $M = S \bowtie T$ be a Zappa-Szép product of S and T. Then for $s_1, s_2 \in S, t_1, t_2 \in T$

- $(s_1, t_1) \mathcal{R} (s_2, t_2) \Longrightarrow s_1 \mathcal{R} s_2$ in S.
- $(s_1, t_1) \mathcal{L} (s_2, t_2) \Longrightarrow t_1 \mathcal{L} t_2$ in T.
- $(s_1, t_1) \leq_{\mathcal{R}} (s_2, t_2) \Longrightarrow s_1 \leq_{\mathcal{R}} s_2$ in S.
- $(s_1, t_1) \leq_{\mathcal{L}} (s_2, t_2) \Longrightarrow t_1 \leq_{\mathcal{L}} t_2$ in T.

Let $M = S \bowtie T$ be a Zappa-Szép product of S and T. Then for $s_1, s_2 \in S, t_1, t_2 \in T$

•
$$(s_1, t_1) \mathcal{R} (s_2, t_2) \Longrightarrow s_1 \mathcal{R} s_2$$
 in S .

•
$$(s_1, t_1) \mathcal{L} (s_2, t_2) \Longrightarrow t_1 \mathcal{L} t_2 \text{ in } T.$$

•
$$(s_1, t_1) \leq_{\mathcal{R}} (s_2, t_2) \Longrightarrow s_1 \leq_{\mathcal{R}} s_2$$
 in S.

• $(s_1, t_1) \leq_{\mathcal{L}} (s_2, t_2) \Longrightarrow t_1 \leq_{\mathcal{L}} t_2 \text{ in } T.$

Let $M = S \bowtie T$ be a Zappa-Szép product of S and T. Then for $s_1, s_2 \in S, t_1, t_2 \in T$

•
$$(s_1, t_1) \mathcal{R} (s_2, t_2) \Longrightarrow s_1 \mathcal{R} s_2$$
 in S .

•
$$(s_1, t_1) \mathcal{L} (s_2, t_2) \Longrightarrow t_1 \mathcal{L} t_2 \text{ in } T.$$

•
$$(s_1, t_1) \leq_{\mathcal{R}} (s_2, t_2) \Longrightarrow s_1 \leq_{\mathcal{R}} s_2$$
 in S .

•
$$(s_1, t_1) \leq_{\mathcal{L}} (s_2, t_2) \Longrightarrow t_1 \leq_{\mathcal{L}} t_2 \text{ in } T.$$

Let $M = S \bowtie T$ be a Zappa-Szép product of S and T. Then for $s_1, s_2 \in S, t_1, t_2 \in T$

•
$$(s_1, t_1) \mathcal{R} (s_2, t_2) \Longrightarrow s_1 \mathcal{R} s_2$$
 in S .

•
$$(s_1, t_1) \mathcal{L} (s_2, t_2) \Longrightarrow t_1 \mathcal{L} t_2 \text{ in } T.$$

•
$$(s_1, t_1) \leq_{\mathcal{R}} (s_2, t_2) \Longrightarrow s_1 \leq_{\mathcal{R}} s_2 \text{ in } S.$$

•
$$(s_1, t_1) \leq_{\mathcal{L}} (s_2, t_2) \Longrightarrow t_1 \leq_{\mathcal{L}} t_2 \text{ in } \mathcal{T}.$$

Transformation monoids

Let S be a transformation monoid acting on a set T where T is a right zero semigroup. Defining action of S on T by $(s, t) \rightarrow t^s = ts \in T$ and the action of T on S by $(s, t) \rightarrow t \cdot s = 1_S \in S$, we get the external Zappa-Szép product $M = S \bowtie T$ with binary operation

$$(s,t)(s'.t')=(s,t')$$

On the other hand, if we consider T as a left zero semigroup and define $(s, t) \rightarrow t \cdot s = s \in S$ and $(s, t) \rightarrow t^s = ts \in T$ we obtain a Zappa-Szép product with multiplication

$$(s, t)(s'.t') = (ss', ts').$$

Applications of Zappa-Szép product to semigroups

The Bruck-Reilly extension of a monoid

Let S be a monoid and θ be an endomorphism of it. The Bruck-Reilly extension $BR(S, \theta)$ consists of triples (k, s, m), where k and m are natural numbers and $s \in S$.

Kunze discovered that $BR(S, \theta)$ is the Zappa-Szép product of (N, +) and semidirect product, $N \rtimes S$, where multiplication in $N \rtimes S$ is defined by the following rule

$$(k,s)\cdot(l,t)=(k+l,(s\theta^l)t).$$

Define for $m \in N$ and $(I, s) \in N \rtimes S$

$$m \cdot (l,s) = (g - m, s\theta^{g-l})$$
 and $m^{(l,s)} = g - l$

where g is greater of m and I. Then $(N \rtimes S) \otimes N$ is Zappa-Szép product with composition rule

$$[(k,s),m] \circ [(l,t),n] = [(k-m+g,s\theta^{g-m}t\theta^{g-l}),n-l+g],$$

where again g is greater of m and l.

Applications of Zappa-Szép product to semigroups

Rees matrix semigroups

Consider a Rees matrix semigroup $M^0[G, I, \Lambda, P]$. Kunze canonically extended $M^0[G, I, \Lambda, P]$ to a Rees matrix semigroup $M^0[G, I', \Lambda', P']$, where $I' = I \cup \{*\}$, $\Lambda' = \Lambda \cup \{*\}$ and

$$p_{\lambda i}' = \left\{ egin{array}{cc} p_{\lambda i} & ext{if} & \lambda \in \Lambda, i \in I \ 1 & ext{otherwise} \end{array}
ight.$$

Then $S = \{(i, 1, *) \mid i \in I'\}$ and $T = \{(*, a, \lambda) \mid a \in G, \lambda \in \Lambda'\}$ are subsemigroups of $M^0[G, I', \Lambda', P']$, because $p_{\star j} = 1$. Now if I' is left zerosemigroup and Λ' is right zero semigroup, then clearly $S \cong I'$ and $T \cong G \times \Lambda'$, because $p_{\lambda *} = 1$. Furthermore every element $(i, a, \lambda) \in M^0[G, I', \Lambda', P'] \setminus \{0\}$ is uniquely

represented as a product in $S \cdot T$. Thus $M^0[G, I', \Lambda', P']$ is a Zappa-Szép product of S and T, with action of S on T and T on S defined by

 $(a, \lambda)^j = (ap_{\lambda j,*})$ and $(a, \lambda).j = *$ respectively.

Proposition 1

Let $S \bowtie T$ be a Zappa-Szép product of semigroups S and T. Let \sim_1 , \sim_2 be congruences on S and T respectively. Define \sim on $S \bowtie T$ by

$$(s,t)\sim (s',t')\Leftrightarrow s\sim_1 s'\wedge t\sim_2 t'.$$

Then \sim is a congruence on $S \bowtie T$ if

$$s\sim_1 s'\wedge t\sim_2 t'\Rightarrow \left\{ egin{array}{cc} t\cdot s\sim t'\cdot s' & {
m and} \\ t^s\sim t'^{s'} & \longrightarrow \star \end{array}
ight.$$

For Zappa-Szép product of monoids the converse is also true.

If \star is valid, then $(S \bowtie T/\sim) \cong (S/\sim) \bowtie (T/\sim)$ for appropriately defined functions (1) and (2) on $(S/\sim) \bowtie (T/\sim)$.

Proposition 2

Let $S \bowtie T$ be a Zappa-Szép product of monoids and \sim a congruence relation on T such that

$$t \sim t' \Rightarrow t^s \sim t'^{s'}$$
 for every $s \in S$.

Define an equivalence on S by

$$s \approx s' \Leftrightarrow \forall t \in T : t^s \sim t'^{s'}.$$

If T/\sim is right cancellative, $(s,t)\sim (s',t')\Leftrightarrow s\approx s'\wedge t\sim t'$ is a congruence on $S\bowtie T$.

Example

As an example for a situation dual to above proposition take $T = A^*$ and S as the set of states for an accepting automaton $\mathcal{A} = (A, S, \delta, q_0, F)$ for a language $L \subseteq A^*$. Equip S with right zero multiplication to fulfill additional assumption of Proposition (2). Put

$$\mathsf{a^s}=1, \mathsf{a.s}=\delta(\mathsf{a}, \mathsf{s})$$

where δ is state transition function of ${\cal A},$ and consider an equivalence \sim on ${\it S}$ satisfying

$$s_1 \sim s_2$$
 implies $\delta(w, s_1) \in F \Leftrightarrow \delta(w, s_2) \in F$

for every $w \in A^*$. If \sim is equality, then A^* / \approx is the transition monoid of \mathcal{A} . If \sim is coarsest possible equivalence, then A^* / \approx is the syntactic monoid of \mathcal{L} .

Regular Zappa-Szép product

 The (internal) Zappa-Szép product M = A ⋈ B of the regular subsemigroups (submonoids) A and B need not be regular in general. Following is an example related to this situation.

Example

Let $A = \{1, e, f\}$ where $e^2 = e, f^2 = f, ef = f = fe$ and $B = \{1, b\}$ where $b^2 = b$. Suppose $1 \in A$ act trivially on B, so that

$$1^e = 1^f = 1, b^e = b^f = 1$$

and $1 \in B$ act trivially on A, that is

$$b \cdot 1 = 1, b \cdot e = f, b \cdot f = f.$$

Then A and B are regular monoids.

Regular Zappa-Szép product

We have following multiplication table:

	(1, 1)	(1, b)	(e, 1)	(e, b)	(f, 1)	(f, b)
(1, 1)	(1, 1)	(1, b)	(e, 1)	(e, b)	(f, 1)	(f, b)
(1, b)	(1, b)	(1, b)	(f, 1)	(f, b)	(f, 1)	(f, b)
(e, 1)	(e,1)	(e, b)	(e,1)	(e, b)	(f, 1)	(f, b)
(e, b)	(e, b)	(e, b)	(f, 1)	(f, b)	(f, 1)	(f, b)
(f, 1)	(f,1)	(f, b)	(f, 1)	(f, b)	(f, 1)	(f, b)
(f, b)	(f, b)	(f, b)	(f, 1)	(f, b)	(f, 1)	(f, b)

From the table we see that multiplication is associative. Then $M = A \bowtie B$ is Zappa-Szép product of A and B which is not regular, since (e, b) is not a regular element. Moreover

$$E(M) = \{(1,1), (1,b), (e,1), (f,1), (f,b)\}$$

which is not a subsemigroup of M, since $(e, 1)(1, b) = (e, b) \notin E(M)$.

Proposition

If A is regular monoid, B is a group, $1_B \cdot a = a, (1_B)^a = 1_B$, for all $a \in A$, then $M = A \bowtie B$ is regular.

Proposition

Let A be a left zero semigroup and B be a regular semigroup. Suppose for all $b \in B$, there exists some $a \in A$ such that $b^a = b$, and for all $x \in A$, there exists some $b' \in V(b)$ such that $(b')^x = b'$. Then $M = A \bowtie B$ is regular.

The semidirect product of inverse semigroups/monoids need not be inverse in general. We see it from the following example.

Example Let $S = \{1, a\}$ be the commutative monoid with one non zero-identity idempotent *a*. Let $T = \{1, e, 0\}$ be the commutative monoid with zero and $e = e^2$.

Then S and T are both inverse monoids, and there is a homomorphism

$$\theta: S \rightarrow End(T)$$
 given by $1^a = 1, e^a = 0^a = e.$

Then $P = S \ltimes T$ is regular. However the element $(a, e) \in P$ has two inverses, (a, e) and (a, 0). Hence P is not inverse monoid. A complete characterization of semidirect product of inverse monoids is given by *W.R. Nico* in 1983.

Theorem

A semidirect product $P = S \ltimes T$ of two monoids S and T determined by the homomorphism $\theta : S \to End(T)$ will be an inverse monoid if and only if,

(i) S and T are inverse monoids.

(ii) For every $e = e^2 \in S, \theta(e) = 1 \in End(T)$, i.e $t^e = t$ for all $t \in T$.

The Zappa-Szép product $P = S \bowtie T$ of inverse semigroups S and T need not be inverse in general as we we can see from following example.

Example

Let $S = \{e, f, ef\}$, where $e^2 = e, f^2 = f, ef = fe$ and $T = \{1, a, b, ab\}$, where $a^2 = 1, b^2 = 1, ab = ba$. Suppose that action of T on S defined by

$$a \cdot e = f, b \cdot e = f, a \cdot f = e, b \cdot f = e$$

and $1 \in T$ act trivially. The action of S on T defined by

$$a^e = f, b^e = b, a^f = b, b^f = b.$$

Thus S and T are inverse but $P = S \bowtie T$ is not inverse.

Suha wazan has given necessary condition for the Zappa-Szép product of inverse semigroups to be inverse in the following Proposition:

Proposition

The Zappa-Szép product $P = S \bowtie T$ of S and T is inverse semigroup if and only if,

(i) S and T are inverse semigroups,

(ii) E(S) and E(T) act trivially,

(iii) If $p = st \in E(P)$, then s and t act trivially on each other.